- Joined
- Jul 23, 2015
- Messages
- 16,681
He makes some pretty solid arguments against unfinished flats, and rough surfaces on a food contact blade, and I generally feel I learn a lot whenever I read his site, but this time I am having a hard time swallowing his assertion that carbon steels are not food safe. Not because I don't respect the man's work, or his opinions, but because I am pretty sure that humanity has survived for thousands of years with only carbon steels to cut food with. So what gives?
Do we have arguments against this? Or is he in fact spot on and I am just late to the party? I ask because I am about to make a couple more chef knives, and was thinking to use 1080 steel from old sawmill blades.
https://www.jayfisher.com/Food_Safety_Kitchen_Chefs_Knives.htm
It's a long article, but here is one of his main points in this regard:
Do we have arguments against this? Or is he in fact spot on and I am just late to the party? I ask because I am about to make a couple more chef knives, and was thinking to use 1080 steel from old sawmill blades.
https://www.jayfisher.com/Food_Safety_Kitchen_Chefs_Knives.htm
It's a long article, but here is one of his main points in this regard:
Jay Fisher said:Patina (Oxidation)
Not Food Safe
Knifemakers and manufacturers who use carbon steels for their knife blades realize that they can't leave a bare steel surface on their blades. Whether carbon steels are used completely and uniformly for the blade, or the blades are made of layered pattern-welded damascus, the carbon steel cannot be simply left bare and unprotected. If it is, it will immediately rust in the presence of moisture and oxygen. The moisture in the air alone is enough to start uncontrolled darkening, rusting and pitting. Since this is the case, why would anyone suggest a carbon steel knife blade be used in any application where moisture is a component of the cutting task?
Man has known for millennia that "pre-corroding" steels can create a surface that improves corrosion resistance. Early steels were darkened, oxidized with solutions and chemistry, and this practice eventually led to bluing.
Bluing is the process of exposing the steel to chemistry that causes a reaction of the surface that creates a penetrating layer of darkened, corrosion-resisting steel. Bluing, at its very best, can slow corrosion slightly in carbon steels, but it is not a corrosion preventer. For instance, even the very best blued firearms must be oiled or waxed and protected from exposure to any moisture, since they will readily rust!
A patina is even less protection than bluing. Many metalworkers call patinas in carbon steel "poor man's bluing." The reason I emphasize the word "patina" is that actual patinas on metal surfaces like bronze (the accepted standard of the word) are created with strong surface chemical reactions and heat, creating a completely passive and long-lasting surface that resists corrosion—even in outside exposures—for centuries. These patinas bond fiercely with the metal surface, dramatically changing the entire chemical makeup of the bronze surface. Ask any patineur, and you'll find this is an entire science to itself, and can be quite complicated and detailed. This is far and away from a knifemaker's poor man's patina which is usually created with acidic or caustic foodstuffs (coffee, mustard, ferric chloride, etc.) slathered on the bare steel to darken it.
This is not corrosion protection. Carbon steel knife blades treated this way will easily corrode, and that is why all knifemakers and manufacturers who offer this type of blade insist that the blades be oiled, waxed, or protected in some additional way. As I referred to on my Chef's Knives page at this bookmark, these blades so quickly and readily rust that makers blame the knife owner, and then peddle kits with sandpaper and oil to maintain their inferior blades!
Even if the very best blotchy, dark, so-called patina is applied to the blade, it inhibits corrosion very little. Beyond that, the cutting edge, which offers bare, exposed metal every time the knife is sharpened or used is never, ever protected from corrosion.
Clearly, mill scale or fake mill scale (burned oil residue and forging oxides), patinas, and darkened oxidized surfaces of carbon steel are not corrosion preventers in any way and may actually harbor bacteria and harmful pathogens due to their roughened surface and unhygienic nature. Why would anyone expose themselves and their family to this?
Again, the fact that any surface treatment of a steel surface to darken it or inhibit corrosion means that it's not a stainless steel and is not food-safe! The only exception would be true stainless steels that are in the list below that have been hardened and tempered, and are blackened for appearance only. In my own work, I only offer this on tactical combat knives, and never on kitchen knives since they need to be clean and as smooth as possible. No stainless requires any patina or scale or any coating to resist corrosion. Stainless steels don't need to be painted, coated, coddled, waxed, oiled, or preserved in any way; only non-food contact safe steels need this.