Coloring Titanium

Joined
Oct 4, 1998
Messages
696
I am looking for help with coloring Titanium to uniform colors. I have a reactive metals machine and have had good luck with multi coloring. I am using Coke as the fluid. I would like to color the liners/ bolsters etc all the same color without different shades of purple/dark blue/lite blue etc. I am also using a piece of Ti ground to a small hook design to hook the parts and dip them together. Thanks in advance.
 
I got this from a web site an annodizing titanium. Hope it helps............................................................... Processes, methods, and apparatus presented herein have not been tested or verified by ArtMetal in any way. Anyone using any of this information is doing so at their own risk."


--------------------------------------------------------------------------------
Note: Electrical shock hazard. The following procedures require the use of potentially dangerous high voltage power supplies. Please follow strict safety procedures for handling high voltage electrical equipment.
Anodizing most closely resembles standard electroplating. When a reactive metal is suspended in a electrolytic bath as an anode(+) and current is passed through the bath, oxygen is produced at the anode surface. This oxygen reacts with the metal to form a thin oxide film that generates colors. The transparent oxide increases in thickness in relation to the amount of voltage applied. At any given voltage the oxide will grow to a specific thickness (i.e. color) and stop, having reached a stage where current will no longer pass. This phenomenon of voltage controlled growth means that the color is also voltage controlled.

An area of oxide produced with a high voltage will not pass current from a lower voltage. In other words an area anodized at 60 volts will not need masking when an adjacent area is anodized to 40 volts. It follows that multiple anodizing processes should proceed in decreasing voltages. Working in descending order will save masking and generate fewer errors.

While oxygen is generated at the anode(+), hydrogen is formed at the cathode(-). Titanium and stainless steel make most convenient cathodes. This process does not have much throwing power and it is necessary to have a cathode equal to or larger than the anode.

The electrolytic solution can be almost any liquid capable of carrying current. Such diverse solutions as Coca-Cola, Sparex, sulfuric acid, ammonium sulfate (fertilizer), magnesium sulfate (Epsom salts), trisodium phosphate, dish detergents and even wine will work. Recommended here is a solution of 3 to 10% by weight trisodium phosphate (T.S.P.) in solution with distilled water. The percentage of chemicals in the solution will determine to some extent the length of time for the desired reaction to be completed. Slowing the reaction can be achieved by lowering the concentration of chemical in solution.



Power supplies
The power supply required for anodizing has a much greater range of voltage control and lower range of current capabilities than plating rectifiers. The requirements are 0-150 volts DC variable in one volt increments and from 2-5 amps. Larger capacity power supplies may be necessary for work larger than jewelry and in high volume production.

Anodizing procedures


Bath anodizing
This technique is best for one color, rainbow and mass produced work. You will need, 1) a power supply 2) a plastic or glass container 3) electrolyte 4) a cathode and 5) titanium clips, holders or hooks to hold the work. With the pieces to be anodized in the bath, turn the anodizer ON and slowly increase the voltage. You may see small bubbles appear on the surface of the anode. This is an indication that the anodizing is taking place. The colors will continue to change as the voltage increases. If you do not like the color, increase the voltage and produce a new color. You can never bring the color back down once it is passed. Turn the power OFF, remove the piece, rinse and wipe dry. Only then will you see the true color.


Anodic painting
Note: The metal ferrule of paint brushes, other metals and conductive materials that could come in contact with the operator or cause a short circuit should be covered with electrical tape or coated with a plastic coating. Always wear rubber gloves. This is where the real graphic potential of this process comes into play. This technique brings the electrolyte to the work. Applicators can be made by soldering an insulated wire on to the metal ferrule of an artist's brush or clipping on to a sponge with the cathode lead wire.


Connect the anode(+) lead from the power supply to a reactive metal workpiece. Connect your applicator to the cathode(-) output of the power supply. Moisten the applicator in electrolyte. Turn on the power supply and set the voltage to the desired level. Touch the applicator to the surface and the colors will begin to appear.

If the applicator is held in one position the colors will slowly radiate out from the point of contact. With excess electrolyte and constant movement, even large areas can be evenly colored. Fine detail work can be produced with an almost dry brush.

Masking
Defined areas of color can be achieved with the techniques described above and suitable maskings. Masking agents like asphaltum, lacquer, photo resists and specialty tapes can be applied by a variety of techniques. Multiple anodizing steps are performed as layers of resists are removed for spectacular effects.


------------------
Always think of your fellow knife makers as partners in the search for the perfect blade, not as people trying to compete with you and your work!http://www.nebsnow.com/L6steel
Buzzards gotta eat, same as worms!!!

[This message has been edited by L6STEEL (edited 06-25-2000).]
 
Back
Top