Now that goes to another issue. What happens when the insert dislodges or falls out? The screws will have to be very secure for some of these guys beating on them and if they think the knife is supposed to take it they will do that. Again time will tell. My thoughts are that overall there are some benefits from the stand point of repairs.
It’s much easier to replace an insert to refresh a lock that has worked its way all the way across the contact. This beats the hell out of making a whole new lock or peening the contact like Emerson, Kershaw and many other companies do to repair theirs. Don't get me wrong that’s an old cutler trick as old as the liner lock itself and it works. Heck many makers do it as a part of the process along with heat treating because they believe peening compresses the molecules making it denser so it wears better.
The point is that is not as precise as people like to be whereas a new insert would be, well, new and just like it was before theoretically. It may even be something the user can do themselves in the field or at home. We'll just have to see how this develops. "

eening the contact is a technique used by cutlers to 'refresh' the actual physical contact area on the lock where it connects to and wears against the blade in use. Since the lock is technically supposed to connect and support the blade at the bottom of the lock at the point far enough away from the mid line of the pivot barrel or pin to prevent 'blade roll', (bottom being the area many refer to as the top since its up by the thumb grooves where one depresses the lock to release and free up the blade to close it. Think bottom of the blade when opened and that is technically the bottom of the knife and the where the edge runs with the spine of the blade when opened being at the bottom running along the full length of the folder)
So again since the lock connects at the bottom you have a triad or three points to support the blade when opened. The stop, the pivot in the middle and the lock. If the blade connected to the lock more in the middle or at the top of the lock down where the detent is on most then you would experience blade roll. This is when you have vertical type play but what happens is the blade actually rolls on the lock because the lock connects in the wrong place.
The lock should also be flat not angled at a pitch like the contact is on the blade. Some makers make them and the blade is not quite right so they adjust the lock to fit the blade instead of the blade to fit the lock. This is incorrect and it can cause a 'stepped' or angled pitch to be formed on the lock and that in conjunction with a pitch on the blade is a sure fire way to lead to lock defeats.
When a lock wears and works its way across the tang to the opposite side liner or when it develops blade play many times the maker or the manufacturer will correct this not by bumping up the size of the stop pin but by peening the contact area. This again if you picture it is the area showing signs of wear marks on the lock itself and it should be somewhere on the bottom third of the lock far enough from the mid line of the pivot to make a rock solid contact for no play in the blade. Peening means a ball peen hammer and a 3/32 flat end punch placed precisely at a the area just to the left of the contact on a right handed knife. You swing the hammer hitting the punch so it physically 'squishes' out the contact more toward the blade. When done this creates a little 'bubble' sticking out just a few thousandths of an inch and it refreshes the contact as well as compresses the material. This can be done on steel, ti or brass locks and requires different touches or pressures to do it right. It’s been done on compression locks and lock backs also to peen the usually softer area of the rocker arm just a micron or two to adjust the lock for fit before they ship it out the door.
Anodized ti is usually surface only. Heating with a torch usually brings the ti lock contact up to a straw colour or at the least a cherry red orange colour. Letting it cool on its own and repeating this three times builds up quite a bit of anodizing that at times can be resistant to even bead blasting it off and it can harden the metal to the point that it is much more wear resistant in that spot that was heated. Most are done and then blasted afterwards cleaning off the surface that is seen. Others simply don't treat it knowing that titanium is technically a 'self healing' metal that creates an oxide layer on its own as soon as fresh ti is exposed to oxygen. This is true by the way and why ti is resistant to all kinds of corrosion. It’s that oxide layer that forms a barrier between the ti and the atmosphere sealing it off that makes it so resistant to it. Heat and electric current simply stack on layers of this seal and the light refracting off those multi layers is why we see colours. You actually would have to read some of the tech manuals on that to get the full jist. I'll stick with a nut shell description.
Correction. Steel would probably have been dinged also just not as bad and this depends as you said earlier on type of steel, how hard it was set at and so on. Steel as I said requires that things be just so. I repair a lot of knives and most are liner type locks of the thinner type. These wear and indent and even in steel. They also of steel tend to be easier to find fault in contact angles. For example you see a few knives with steep pitch angle contacts 12 degrees or more and to try this with steel will surely cause the locks to defeat with a sharp tap to the spine. Most steel locks need a pitch of 7 to 8 degrees max to work. 10 or above is really pushing it and even Spyderco walks that fine line at times as I see plenty of Military folders with locks that slide toward release back to the flatter area on the blade contact. This with simple spine pressure from my hands so there is no telling how that would go for the user if it was a sharp blow to the spine. "